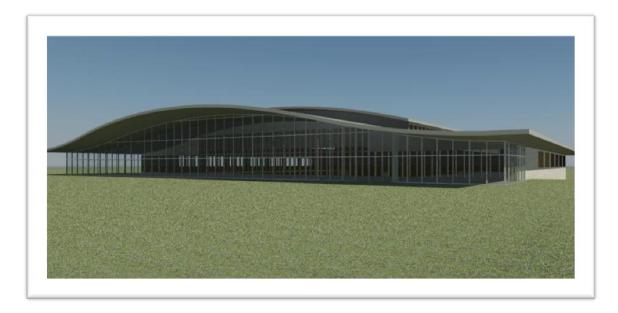
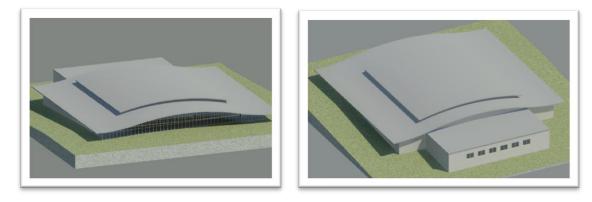
Technical Report 2: (Building & Plant Energy Analysis Report) Due Date: October 27, 2010

The Mirenda Center for Sports, Spirituality, and Character Development

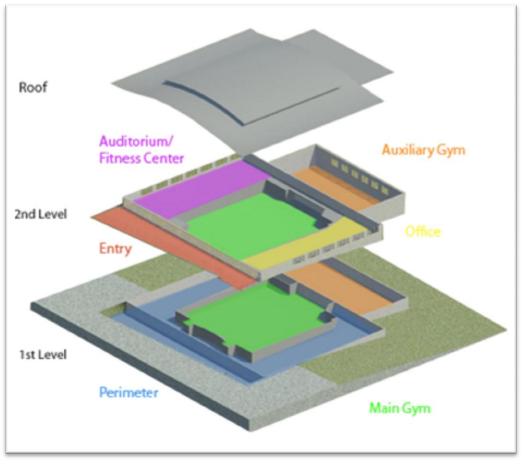

Table of Contents

Executive Summary
General Building Overview3
Mechanical System Overview4
Design Load Estimation5
1. Heating and Cooling Loads
2. O.A. Ventilation Rates
3. Light and Equipment Loads7
4. Occupancy Data7
5. Indoor and Outdoor Air Conditions7
6. Load Sources and Schedules8
7. Comparison of Energy Model to Design Data8
Annual Energy Consumption and Operating Costs8
1. Annual Energy Consumption9
2. Schedule of Building Type11
3. Confirmation from Engineer of Energy Analysis12
4. Compare results to Engineers Energy Model12
5. Compare Energy Model with Actual Energy Bills12
6. Annual Cost of Heating and Cooling Plants13
7. Calculation of Emissions14


Executive Summary

General Building Overview

The Mirenda Center for Sports, Spirituality, and Character Development (CSSCD) is a two story building. The ground floor entrance is at the second level in the front of the building, while the lower level is underground at the front of the building while the sloping topography brings the lower level to exit at ground level in the rear of the building. See Exploded View on following page.



The core of the building is the main gymnasium that seats up to 1450 spectators at the lower level. Wrapped around the main gym at the second level is an indoor running track. The outer most perimeter is as follows: Offices on the east side, Auxiliary gym on the north side, multipurpose and fitness center on the west side, and open glazed atrium on the south side. See Exploded View on following page.

Front View

Rear View

Exploded View

Mechanical System Overview

The Mirenda Center is primarily heated and cooled by 6 roof top air handling units; their location is above the auxiliary gym. RTU-5&6 serve the main gymnasium and the indoor running track in unison. RTU-3 & 4 serve only the auxiliary gym. RTU-1 and 2 serve the remaining perimeter spaces: the auditorium and fitness center, the offices, and entry. There is natural gas burners for heating of the RTU's and reheats for each zone in the constant air volume boxes. There is also electric resistant strip heat around the perimeter of the building. This electric resistance heat is primarily to keep condensation from forming on the glazing.

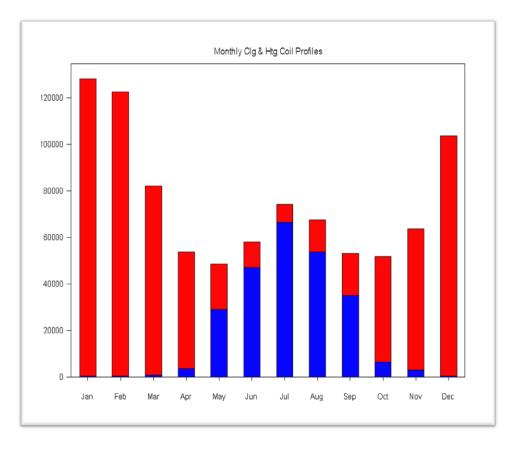
Design Load Estimation

The MirendaCenter is located in Philadelphia, Pennsylvania. The location information is defined by ASHREA Handbook of Fundamentals for 4% for heating and 99.6% for cooling. This information was used for the Student Energy Model.

There is a set thermal capability of the TheMirenda Center to hold heat inside of itself due to its building material construction type. The values were selected based on wall construction masonry units, air gaps, membranes, and roof construction for a 'built up roof' with metal deck, 6 inch cellulose insulation, and also an epdm roofing membrane.

Overall U-Factors		
Roof	0.047 B	tu/h∙ft².°F
Wall	0.121 B	tu/h∙ft².°F
Building	0.078 B	tu/h∙ft²-°F

Once the materials are fixed and the design is complete, an outdoor weather load data of Philadelphiawas applied to the building. The annual weather load is only a piece of the total load on the building. There are also people that emit heat, both sensible and latent. People can will be a significant load on the building because at one situation there will be 1450 spectators/players in the main gymnasium. There are equipment loads such as standard office equipment in the office spaces. There will also be fitness equipment such as treadmills, ellipticals, stairmasters, etc. Each piece emits a constant thermally load that can sum to significant amount if not considered in the initial design. There are also lights. Incandescent light emit approximately 90% of the electrical power that it uses as heat. Fluorescent lights are much less approximately 10%. Both were considered for The Mirenda Center. Now that all the external and internally loads are considered the building must be separated into zones per piece of equipment that will be serving it. The sectioning of the building can be seen in the Mechanical System Overview.


1. Heating and Cooling Loads

Heating Load

The heating load for the building is met by the combination of gas burners in the RTU units and the electric resistance heat both within the spaces, and reheat coils per system description. *(one or the other, or the combination of the two)* The heating load is found from the coldest day and the coldest hour prior to the sun rise. Typically this day is mid-winter. Max heating data for each system is as follows: Auxiliary Gym requires 571.0MBh of heating, Main gymnasium requires 575.9 MBh of heating, and the perimeter system requires 580.9MBh of heating.

Cooling Load

The max cooling load for The Mirenda Center is interesting, it is not necessary in the summer time. There are two possible scenarios that could happen in order to find the max cooling load. The first is the standard hottest day of the hot month at the hottest hour, which is July 16th. The second more interesting possibility is the basketball season. The Mirenda Center holds 1450 people with both the players and spectators includes. The human body load is so significant that the building is required to cool during the debt of winter. 1450 people is approximately 760,000 Btu/h. This load does not quiet trump the total load found in July. Thus equipment size shall be determined from the max monthly cooling load rules. July 16th data for each system is as follows: Auxiliary Gym requires 41 tons of cooling, Main gymnasium requires 152.4 tons of cooling, and the perimeter system requires 125.1 tons of cooling.

Cooling(Tons) Heating(Btu/hr)

6

2. O.A. Ventilation Rates

Outdoor Ventilation rates were taken from the mechanical drawings of the construction documents. RTU 1 is 8800 cfm, RTU 2 is 8500 cfm, RTU 3&4 combined are 7200 cfm, and RTU 5&6 are 242000 cfm.

3. Lighting and Equipment Loads

Space Classification	Lights, W/sf
Main Gym	2.26
Aux Gym	1.27
Fitness Center	0.3
Offices	1
1 st Floor Perimeter	0.84

The Perimeter spaces are compiled of the offices, teaching spaces, fitness center, restrooms, storage, and corridors. The lighting values for first floor perimeter spaces were averaged at 0.84 watts per square foot. This was done to simplify the energy model for the sake of doing a block load. The

Space Classification	Equipment, W/sf
Fitness Center	2
Offices	1
1sr Floor Perimeter	0.25

Equipment was considered for the fitness center, 2nd floor perimeter office, and 1st floor perimeter spaces. The fitness center is filled with the most recent cardio workout equipment. Nearly every piece of equipment in the fitness center has motorized parts and built in television combined with lcd monitors.

4. Occupancy Data

The occupants of The Mirenda Center are comprised of the following. The office has 178 occupants, the fitness center and auditorium has 100 occupants combined, the welcoming center/atrium/entry has 139 occupants, the remainder of the perimeter spaces has 230 occupants, the auxiliary gym has 240 occupants, and the main gymnasium has 564 for the non-basketball seasons schedule, and 1450 occupants for the basketball seasons schedule. The occupancy is at its maximum for all rooms, thus this is most likely an overestimate of the people load for the building. Rarely will all rooms be filled with people at once.

5. Indoor and Outdoor Air Conditions

Indoor conditions were determined by the designer with the acceptable range of the ASHRAE 55 Thermal Comfort. The values set for winter heating 72 °Fand the summer cooling are 74 °F.

Outdoor conditions as referenced in the Design Load Estimation of this section are from the ASHRAE Handbook of Fundamentals for 2008. The locality is Philadelphia, Pennsylvania. The outdoor drybulb temperatures minimum and maximum temperatures are 12 °F dB for the heating season and 93 °F dB/76 °F wBfor the cooling season.

6. Load Sources and Schedules

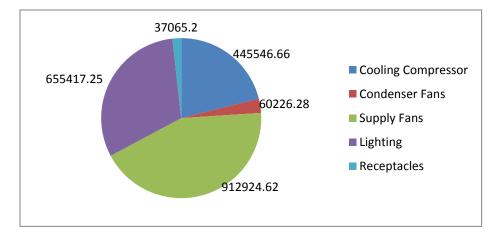
The exterior loads are the façade exposure to the variation of temperature for the year and variation of solar exposure. The interior loads are people, equipment, lights, and miscellaneous plugs loads. Each of these loads has a schedule associated with them, and the most difficult to quantity with a consistent schedule is not doubt people. There are 4 systems air systems RTUs – 1&2 essentially are for the perimeter loads, RTU-3&4 are paralleled and work together to meet the auxiliary gym's load, while RTU 5&6 are paralleled to meet the main gym's load.

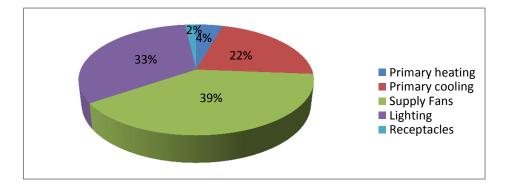
The schedule for RTU – 1&2 is a more common School schedule 7am to 5pm with a dip in the middle for lunch during weekdays. RTU-3&4 is the auxiliary gym where is must be utilized during school hours for recreational class but then also for after school activities such as practices. The most difficult schedule is the main gymnasium with RTUs 5&6.

7. Comparison of Energy Model to Design Data

Students Energy Model				Cooling	Heating
	sqft/ton	cfm/ton	cfm/sqft	cfm	cfm
Main Gym	105	182	1.74	27848	27848
Aux Gym	213	175	0.82	7204	7204
Perimeter	327	262	0.8	26980	26980

Designed Documents				Cooling	Heating
	sqft/ton	cfm/ton	cfm/sqft	cfm	cfm
Main Gym	110	275	2.51	17300	12700
Aux Gym	154	282	1.83	7300	7200
Perimeter	221	211	0.95	24200	20100

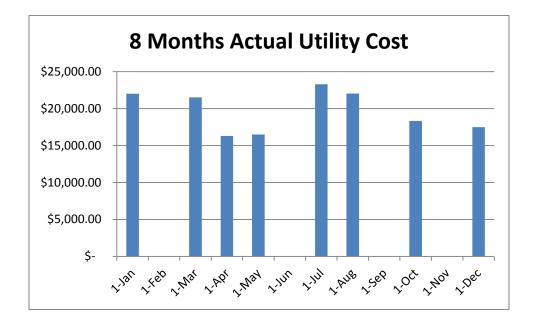

The Student Energy Model has redundant cfm values for the cooling and heating. This could partially be because of the outdoor air requirement of 100% in both seasons. The reason they are both so high is because of the maximum occupancy.


Annual Energy Consumption and Operating Costs

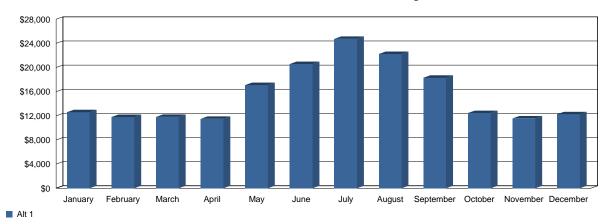
1. Annual Energy Consumption

The energy consumption of The Mirenda Center follows the standard cycle of the weather patterns. There is a higher heating rate in the winter months which convert to gas bills for the natural gas burners in the roof top units in conjunction with the electric bills for resistance heat for both space heat and reheat in ducts.

The highest energy consumed due to electrically ran equipment, such as fans, lights, and majority of the cooling equipment.



Total Source Energy	(kBtu/yr)
Primary heating	902839
Primary cooling	4478760
Supply Fans	8040356
Lighting	6711488
Receptacles	367432


Fairly high assumptions were made for the lighting values. Particularly in the main gymnasium, there was an allowance for 2.26 *W/sq ft*. This number is very large, however justified for the space that they serve

The rate structures for electricity are defined by peco electric.

<u>http://www.peco.com/pecobiz/energy_rates/our_rates_and_prices.htm</u>

Full Year Modeled Utility Cost

2. Schedule of Building Type

Overall Building Operation Schedule:

- Weekdays: 7 am to Midnight
- Weekends: 10 am to 11 pm
- Summer: 8:30 am to 10 pm

Fuel Costs:

Electrical Rate Structure	
Peak Demand	\$6.65 /kW
Off Peak Demand	\$3.25 /kW
Peak Consumption	\$0.07 /kWh
Off Peak Consumption	\$0.06 /kWh

Gas Rate Structure	
Fixed Rate	\$25.00
Variable Rate	\$3.78 Mcf for the first 200 Mcf
	\$2.64 Mcf for additional

Equipment Performance Characteristics:

0.7 in w.g. @ 0.0002 kW/Cfm-in w.g.
0.7 in w.g. @ 0.0002 kW/Cfm-in w.g.
0.7 in w.g. @ 0.0002 kW/Cfm-in w.g.

3. Confirmation from Engineer of Energy Analysis

Yes there was an energy model ran by the engineer. For detailed information of roof top air handling units from Engineers model see Appendix.

4. Compare results to Engineers Energy Model

	Enginee	r's Model	Student	's Model
	Cooling Heating		Cooling	Heating
	MBh	MBh	MBh	MBh
RTU 1&2	1576	397	1501	581
RTU 3&4	541	256	493	575
RTU 5&6	1378	521	1829	571

The Student's Model according to the figure above has higher load values for heating on RTUs 1&2 and RTUs 3&4. When the model was simulated the internal heat from the occupants was only considered for cooling purposes. This may be the reason why more heating is required for the first two systems.

5. Compare Energy Model with Actual Energy Bills

Actual Building Utility Bills					
Dates	-Period	Gas Elect Tota		Total	
Begin	End				
9-Oct	9-Nov			\$-	
9-Nov	9-Dec	\$ 1,243.05	\$ 16,233.99	\$ 17,477.04	
9-Dec	10-Jan	\$ 2,689.61	\$ 19,324.49	\$ 22,014.10	
10-Jan	10-Feb			\$-	
10-Feb	10-Mar	\$ 1,604.17	\$ 19,914.08	\$ 21,518.25	
10-Mar	10-Apr	\$ 496.22	\$ 15,785.64	\$ 16,281.86	
10-Apr	10-May	\$ 381.76	\$ 16,102.70	\$ 16,484.46	
10-May	10-Jun			\$-	
10-Jun	10-Jul	\$ 135.66	\$ 23,146.23	\$ 23,281.89	
10-Jul	10-Aug	\$ 137.94	\$ 21,885.70	\$ 22,023.64	
10-Aug	10-Sep			\$-	
10-Sep	10-Oct	\$ 279.69	\$ 18,036.99	\$ 18,316.68	
	Totals	\$ 6,968.10	\$ 150,429.82	\$ 157,397.92	

According to the 8 months of utility data The Mirenda Center costs approximately \$2.42 per eight months. Remembering that the utilities considered were only gas and electric. The modeled cost data can be seen the Annual Energy Consumption section of this report. Comparing \$2.42 per square foot per eight months to \$2.85 per square foot per year is fairly accurate data. The total actual data versus modeled data are gas \$6.968 to \$6,048 and for electric \$150,429 to \$180,930 respectively.

6. Annual Cost of Heating and Cooling Plants

The annual cost to run the cooling plant is \$38,220. The annual cost to run the heating plant is \$6048. The values are defined by the rate structure of the electrics and gas. The annual cost per square foot for the utilities is \$2.85. The utilities include gas and electric consumption.

Note: The percenta column of the base		* Alt-1 The Mirenda Center				
total energy consur * Denotes the base			noosed lase Prijk Lati	S		
Lighting - Conditi	oned	2,236.9	27 25	5		
Space Heating		Gas	1,116.4	13 1,0	10	
Space Cooling		Electricity	1,522.5	18 1,2	72	
Heat Rejection		Electricity	205.6	2 15	7	
Fans - Conditione	d	Electricity	3,115.8	37 37	3	
Receptacles - Cor	nditioned	126.5	2 1	4		
Total Building C	Consumption		8,323.7			
			* Alt-1 The Mirenda Center			
Total		s heating load not met s cooling load not met	19 0			
	A	CADE	* Alt-1 The l	Mirenda Center	A	
		Energy 10^6 Btu/yr	Cost/yr \$/yr			
Electricity		7,207.3 180,				
Gas		1,116.4	6,048			
Total			8,324	186,978		

7.Calculation of Emissions

The Mirenda Center consumes 2,111,719.81 kWh amount of electricity and 7467.68 gallons of natural gas per year according to the energy model calculation. Consuming electricity and fuel will result in unwanted byproducts such as the sulfur oxide, nitrogen oxide and carbon dioxide. See the tables below for emittance of these byproducts and more. Pre combustion is the emissions of these pollutants from the vehicles, processes that needed to occur in order to get the natural gas on-site before The Mirenda Center could actually burn it.

	On-Site	Pre-Combustion	
	N	atural Gas	Electricity
	1000 ft3	1000 ft3	lbs
CO2e	1.23E+05	4.45E+02	3.67E+06
CO2	1.22E+05	1.86E+02	3.46E+06
CH4	2.50E+00	1.13E+01	7.58E+03
N2O	2.50E+00	3.76E-03	8.17E+01
NOX	1.11E+02	2.62E-01	6.34E+03
SOX	6.31E-01	1.95E+01	1.81E+04
со	9.31E+01	2.18E-01	1.80E+03
voc	6.12E+00	7.29E-04	1.53E+02
Lead	4.99E-04	3.85E-06	2.94E-01
Mercury	2.60E-04	8.80E-07	7.10E-02
PM10	8.39E+00	1.31E-02	1.96E+02
Solid Waste			4.33E+05

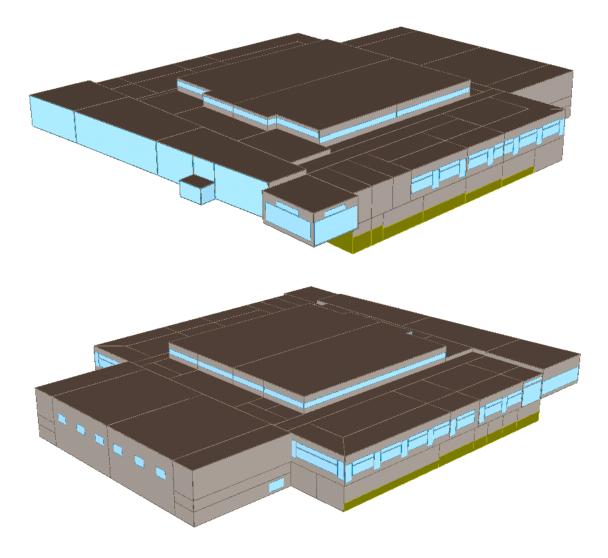
Conclusion:

The Trane Trace 700 program allows to model baseline energy consumption. This baseline is a great tool to understand whether or not The Mirenda Center is performing operatively. The overall performance of The Mirenda Center is higher than the baseline presently. The reasons maybe due to underestimating schedule of use. The newness of the building may attract many unforeseen events that were unaccounted for in the design, such as commencement.

Appendix A

芦 Create	Rooms -	Single Workshee	at .							
Alternative	e 1									Apply
Room des	cription s	o-1-Main_Gynmansium	n		•					Cancel
Templates	s			Length	Widt	n				
Room	Main Gym	•	Floor	16008.	ft 1	ft				New Room
Internal	MainGym	•	Roof (•	3.4209	ft 0.5	ft				Сору
Airflow	Main Gym	•	C	Equals flo	101					Delete
Tstat	Gym	•	Wall							
Constr	Default	•		Length (ft)	Height (ft)	Direction	% Glass or Qty Le	ingth (ft) H	Height (ft) V	/indow
				1.98347	15.60668	271.5287		0		
		f	W-1-E-W-2	1.98327	15.61999	270.5095	5 0 0 0	0)	
		f	W-1-E-W-3	1.98347	15.61676	268.4712	2 0 0 0	0		
			Internal loa				Airflows			
			People	1450	People	-	Cooling vent	15 o	cfm/person	•
			Lighting	2.26	W/sq ft	-	Heating vent	15 0	cfm/person	•
			Misc lo	ads 0	W/sq ft	-	VAV minimum	20	% Clg Airflow	•
<u>S</u> ingle	Sheet	<u>R</u> ooms	Ro	o <u>f</u> s	<u>W</u> a	s	Int Loads	Air	flows	Partn/Floors

📁 Create Rooms - Single Worksh	eet		
Alternative 1			Apply
Room description sp-3-Auxiliary_Gym	•		Close
Templates	Length Width		
Room Aux Gym 💌	Floor 8743.4 ft 1 ft		<u>N</u> ew Room
Internal AuxGym	Roof (* 141.83 ft 63.083 ft		Copy
Airflow Aux Gym 💌	C Equals floor		Delete
Tstat Gym 💌	Wall		
Constr Default 💌	Description Length (ft) Height (ft) Direction	n % Glass or Qty Length (ft) Height (ft)	Window
	S-3-E-W-2 63.08333 27.66667 180		
	E-3-E-W-2 141.83333 27.66667 90	0 0 0	
	N-3-E-W-2 63.08333 27.66667 0		
	Internal loads	Airflows	
	People 240 People 💌	Cooling vent 0.824 cfm/sq ft	▼
	Lighting 1.27 W/sq ft 💌	Heating vent 0.824 cfm/sq ft	▼
	Misc loads 0 W/sq ft 💌	VAV minimum 20 % Clg Airflov	~ -
Single Sheet Booms	Roo <u>f</u> s <u>W</u> alls	Int Loads Airflows	Partn/Floors


📜 Create Rooms - Single Worksh	eet				
Alternative 1					Apply
Room description sp-2-1st_Floor_Perim	eter	•			<u>C</u> lose
Templates	Length	Width			
Room Perimeter 💌	Floor 18937.	ft 1 ft			New Room
Internal Perimeter	Roof 🕫 🛛	ft 0 ft			Copy
Airflow Perimeter	C Equals I	loor			Delete
Tstat Perimeter 💌	Wall				
Constr Default 🗨	Description Length (f) Height (ft) Direction	n % GlassorQty Ler	ngth (ft) Height (ft) 🗸	√indow
	W-2-E-W-2 218	14 270	0 0 0	0	
	S-2-E-W-2 163.1666	7 14 180	0 0 0	0	
	E-2-E-W-2 38.08333	14 90	0 0 0	0	
	Internal loads		Airflows		
	People 230		Cooling vent		-
	Lighting 0.84	W/sq ft 🔹	Heating vent	0.423 cfm/sq ft	•
	Misc loads 0	W/sq ft 💌	VAV minimum	20 % Clg Airflow	•
Single Sheet Rooms	Roo <u>f</u> s	<u>₩</u> alls	Int Loads	Airflows	Partn/Floors

💭 Create Rooms	- Single Worksheet										_ 🗆 🔀
Alternative 1 Room description	sp-4-Entry			•							Apply
Templates			ength	Width							
Room Perimete	r 💌	Floor 6	656.5 ft	1	ft						New Room
Internal Perimete	r 💌	Roof 🖲 🖸	5009 ft	39.025	ft						Сору
Airflow Perimete	r 💌	C Ec	quals floor								Delete
Tstat Perimete	r 💌										Delete
Constr Default	•	Wall									
				Height (ft)	Direction		<u> </u>	Length (ft)	Height (ft)	Vindow	
		-4-E-W-3 0.5		_	90	-	0	0	U	ĿĤ	
		-4-E-W-3 0.5		11.86768	90	-		0.16667	10	V	
	E	-4-E-W-3 122	.43971	24.12655	90	0	0		0		
		Internal loads				Airfloy	NS				
		People	139	People	•	Co	oling ver	nt 0.423	cfm/sq ft	-	
		Lighting	0.25	W/sq.ft	-	He	eating ver	nt 0.423	cfm/sq ft	-	
		Misc loads	0	W/sq.ft	•	VA	V minimu	im 20	% Clg Airflow	•	
		D (A. 0		
<u>S</u> ingle Sheet	<u>R</u> ooms	Roo <u>f</u> s		<u>₩</u> all	s	Int l	_oads		Airflows) <u> </u>	rtn/Floors

Create Rooms - Single Works	heet		
Alternative 1 Room description sp-5-Auditorium	Fitness	Ē	Apply <u>C</u> lose
Templates Room [Dffice V Internal [Dffice V Aaflow [Office V Tstat Perimeter Constr [Default V	Length 76721 Width 1 Roof 0 74537 t 1 t C 1.4537 t 162.66 t C Equals floor Wall Description Length (th) Height (th) Discription Length (th) N-55-W-4 182.66667 12.80301 W-55-W-4 8.26657 5 270		New Room
Single Sheet Booms	Internal loads People 100 People Lighting 0.3 W/sq.ft Misc loads 0.75 W/sq.ft Roofs Walls	Airflows Cooling vent 0.423 cfm/sq ft Healing vent 0.423 cfm/sq ft VAV minimum 20 % Cig Airflow Int Loads Airflows Part	n/Floors

📁 Create Rooms - Single Workst	neet 📃 🗖 🖸
Alternative 1	Apply
Room description sp-6-Office	
Templates	Length Width
Room Office 💌	Floor 7662.3 ft 1 ft New Room
Internal Office 💌	Roof © 1.4189 ft 162.66 ft Copy
Airflow Office 💌	C Equals floor Delete
Tstat Perimeter 💌	
Constr Default 💌	wa Description Length (ft) Height (ft) Direction % Glass or Qty Length (ft) Height (ft) Window
	S-6E-W-4 162.66667 12.76194 180 0 0 0 0
	E-6-E-W-4 38.08333 14.45656 90 0 0 0 0
	W-6-E-W-5 8.31882 5 270 0 1 0.25 3 🔽 🗸
	Internal loads Airflows
	People 178 People Cooling vent 0.423 cfm/sq ft
	Lighting 1 W/sq ft v Heating vent 0.423 cfm/sq ft v
	Misc loads 0.5 W/sq ft 💌 VAV minimum 20 % Clg Airflow 💌
Single Sheet Booms	Roo <u>f</u> s <u>W</u> alls Int Loads <u>A</u> irflows <u>P</u> artn/Floors

NeumannCollege Energy Model Comparisons 7/9/08

MODEL CONSTANTS

Energy Rates

- Electric: PECO General Service
- Gas: PECO

Occupancy Schedules

- OverallBuilding Operation:
 - Weekdays: 7 am to Midnight
 - Weekends: 10 am to 11 pm
 - Summer: 8:30 am to 10 pm

- Main Gym: Peak = 3 pm to 10 pm, 7 days, 25 Basketball Events (Nov. to April) 700 people peak occupancy, 1900 people peak occupancy events twice a year, 10 Volleyball Events (April to June) 700 peak occupancy, Summer Day Camp (6 weeks in summer) 380 peak occupancy

- Varsity Lockers, Coaches Lockers, FitnessCenter, Studio, Multipurpose, Alumni Hall, Track: Peak Hours: 3 pm to 10 pm

- Gym Storage, Equipment Storage: Peak Hours= 10 am to 9 pm
- Laundry, Training Room: Peak Hours= 10 am to Midnight
- Classroom: Peak Hours = 8 am to 10 pm
- Offices: Peak Hours = 8 am to 6 pm
- All Others: Occupancy Same as Building
- Summer Break: 5/7 to 8/20
- Winter Break: 12/13 to 1/14
- Standard US Holidays recognized

ASHRAE 90.1-2004 APPENDIX G BASELINE MODEL

Internal Loads

Space Classification	Lights , W/sf	Equipment , W/sf	Occupancy
Main Gym	1.4	0.4	1900 peak
Aux Gym	1.4	0.1	400 peak
Stairs	0.6	0	0
PE Lockers	0.6	0	80
Varsity Lockers	0.6	0	120
Mech/Elec	1.5	0.1	1
Student Lounge	1.3	0.5	30
Corridor	0.5	0	100
Lobby	1.3	0.5	100
Coach Lockers	0.9	0	18
Office	1.1	2	100 sf/per
Training Room	1.4	0.1	12
Equipment Storage	0.8	0	4
Gym Storage	0.8	0	4
Restroom	0.9	0	100 sf/per
Hospitality Suite	1.4	1	50
CSSCD Offices	1.1	2	8
Classroom	1.4	1	40
Athletics Office	1.1	2	20
Track	0.5	0.5	150
FitnessCenter	2.2	0.1	50
Studio	1.4	1	25
Multipurpose	1.4	1	50
Dining	1.3	0.5	80

Alumni Hall	1.3	0.5	80
IT/Media Rooms	2.3	2	100 sf/per

- External Lights = 1.922 kW

Envelope

Component	Description	U Factor (U _{eq})	Other
Window	ASHRAE Minimum performance	0.56	SHGC = 0.35
Roof	Built-up Roof, 2" Polystyrene	0.063	
External Walls	1" Stucco, 6" Metal Stud, R 6.8 Insulation, 1/2" Gypsum	0.124	
Slab	6" HW Concrete	0.0188	
Below-Grade Walls	16" HW Concrete	0.234	

- No Shades

- No Daylighting Controls

Air-Side System

- Refrigerant Hot Gas Reheat: Not included as preset for Packaged VAV system type. Therefore, not included in baseline.

- AHU 1:

- System 5: Packaged VAV with Reheat
 - Supply Fan: 0.000981 kW/cfm, 17,950 CFM
 - VAV terminals: Min flow ratio = 0.4 cfm/ft^2
 - Night Cycle Control: Cycle on any
 - Cooling source: DX Coils

- Total Coil Capacity = 759.0 MBh, 0.286 EIR w/ fans removed
- Supply Air Temperature = 54 PF
- Room Design Temperature = 74 °F
- Heating source: HW Loop
 - Supply Air Temperature = 92 P
 - Room Design Temperature = 72 P
 - HW RH Coil: DT = 50 ºF
 - Furnace PreHeat: Capacity = -648 MBh, 1.2462 HIR, disch T setpt = 53°F
- Providing 20 cfm/person ventilation in office areas
- Exhaust Fan EF-1: 8,000 cfm from required zones, .000266 kW/cfm
- SAT reset: 55ºF 59ºF

- AHU 2:

- System 5: Packaged VAV with Reheat
 - Supply Fan: 0.000981 kW/cfm, 18,370 CFM
 - VAV terminals: Min flow ratio = 0.4 cfm/ft²
 - Night Cycle Control: Cycle on any
 - Cooling source: DX Coils
 - Total Coil Capacity = 816.7 MBh, 0.301 EIR w/ fans removed
 - Supply Air Temperature = 54 PF
 - Room Design Temperature = 74 °F
 - Heating source: HW Loop
 - Supply Air Temperature = 92 P
 - Room Design Temperature = 72 P
 - HW RH Coil: DT = 50 ºF

- Furnace PreHeat: Capacity = -650 MBh, 1.25 HIR, disch T setpt = 53°F

- Providing 20 cfm/person ventilation in office areas
- Exhaust Fan EF-2: 2,000 cfm from required zones, .000267 kW/cfm
- Exhaust Fan EF-4: 1,100 cfm from required zones, .000209 kW/cfm
- SAT reset: 55ºF 59ºF

- AHU 3 & 4:

- System 5: Packaged VAV with Reheat
 - Supply Fan: 0.000991 kW/cfm, 11,843 CFM
 - VAV terminals: Min flow ratio = 0.4 cfm/ft²
 - Night Cycle Control: Cycle on any
 - Cooling source: DX Coils
 - Total Coil Capacity = 541.2 MBh, 0.290 EIR w/ fans removed
 - Supply Air Temperature = 54 °F
 - Room Design Temperature = 74 °F
 - Heating source: HW Loop
 - Supply Air Temperature = 92 °F
 - Room Design Temperature = 72 P
 - HW RH Coil: DT = 50 ºF
 - Providing 20 cfm/person ventilation in office areas
 - Exhaust Fan EF-3: 600 cfm from required zones, .000184 kW/cfm
 - SAT reset: 55ºF 59ºF

- AHU 5&6:

- System 5: Packaged VAV with Reheat

- Supply Fan: 0.000960 kW/cfm, 24,138 CFM
- VAV terminals: Min flow ration = 0.4 cfm/ft²
- Night Cycle Control: Cycle on any
- Cooling source: DX Coils
 - Total Coil Capacity = 1,378 MBh, 0.315 EIR w/ fans removed
 - Supply Air Temperature = 54 PF
 - Room Design Temperature = 74 °F
- Heating source: HW Loop
 - Supply Air Temperature = 92 P
 - Room Design Temperature = 72 P
 - HW RH Coil: DT = 50 ºF
- Providing 20 cfm/person ventilation in office areas
- SAT reset: 55ºF 59ºF

Sources:

- Commercial Buildings Energy Consumption Survey
- ASHRAE Standards
- Trane Trace 700